Characterizing chainable and tree-like continua

Taras Banakh, Zdzisław Kosztołowicz & Sławomir Turek

Department of Mathematics Jan Kochanowski University in Kielce

Hejnice, January-February 2010

1/15

Continuum = compact connected Hausdorff space

Definition 1

An open cover \mathcal{U} of X is called *chain-open cover* of X if for \mathcal{U} there is an enumeration $\mathcal{U} = \{U_1, \ldots, U_m\}$ such that

 $U_i \cap U_j \neq \emptyset \iff |i - j| \leqslant 1$ for all $1 \leqslant i, j \leqslant n$.

Definition 2

A continuum X is called *chainable* if each open cover of X there is a chain-open cover refinement.

Remark

In metric case a continuum X is chainable iff for each $\varepsilon > 0$ there is a chain-open cover \mathcal{U} of X with mesh $(\mathcal{U}) < \varepsilon$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Continuum = compact connected Hausdorff space

Definition 1

An open cover \mathcal{U} of X is called *chain-open cover* of X if for \mathcal{U} there is an enumeration $\mathcal{U} = \{U_1, \dots, U_m\}$ such that

 $U_i \cap U_j \neq \emptyset \iff |i - j| \leqslant 1 \text{ for all } 1 \leqslant i, j \leqslant n.$

Definition 2

A continuum X is called *chainable* if each open cover of X there is a chain-open cover refinement.

Remark

In metric case a continuum X is chainable iff for each $\varepsilon > 0$ there is a chain-open cover \mathcal{U} of X with mesh $(\mathcal{U}) < \varepsilon$.

Continuum = compact connected Hausdorff space

Definition 1

An open cover \mathcal{U} of X is called *chain-open cover* of X if for \mathcal{U} there is an enumeration $\mathcal{U} = \{U_1, \dots, U_m\}$ such that

$$U_i \cap U_j \neq \emptyset \iff |i - j| \le 1$$
 for all $1 \le i, j \le n$.

Definition 2

A continuum X is called *chainable* if each open cover of X there is a chain-open cover refinement.

Remark

In metric case a continuum *X* is chainable iff for each $\varepsilon > 0$ there is a chain-open cover \mathcal{U} of *X* with mesh(\mathcal{U}) < ε .

Continuum = compact connected Hausdorff space

Definition 1

An open cover \mathcal{U} of X is called *chain-open cover* of X if for \mathcal{U} there is an enumeration $\mathcal{U} = \{U_1, \dots, U_m\}$ such that

$$U_i \cap U_j \neq \emptyset \iff |i - j| \le 1$$
 for all $1 \le i, j \le n$.

Definition 2

A continuum X is called *chainable* if each open cover of X there is a chain-open cover refinement.

Remark

In metric case a continuum *X* is chainable iff for each $\varepsilon > 0$ there is a chain-open cover \mathcal{U} of *X* with mesh(\mathcal{U}) < ε .

Continuum = compact connected Hausdorff space

Definition 1

An open cover \mathcal{U} of X is called *chain-open cover* of X if for \mathcal{U} there is an enumeration $\mathcal{U} = \{U_1, \dots, U_m\}$ such that

$$U_i \cap U_j \neq \emptyset \iff |i - j| \leq 1$$
 for all $1 \leq i, j \leq n$.

Definition 2

A continuum X is called *chainable* if each open cover of X there is a chain-open cover refinement.

Remark

In metric case a continuum X is chainable iff for each $\varepsilon > 0$ there is a chain-open cover \mathcal{U} of X with mesh(\mathcal{U}) < ε .

Definition 3

A continuum X is called *n*-chainable, where $n \ge 3$, if for any open cover \mathcal{U} with $|\mathcal{U}| \le n$ there is an open-chain refinement.

A continuum X is a chainable iff X is n-chainable for each n.

Remark

If X is *n*-chainable, then X is *m*-chainable for each $m \leq n$.

In the paper T. Banakh, P. Bankston, B. Raines, W. Ruitenburg, *Chainability and Hemmingsen's theorem*, Topology Appl. **153** (2006) 2462–2468, it was announced (without proof) that 4-chainable implies *n*-chainability for each *n*. In other words 4-chainability implies chainability. **We will show that the same is true in more general situation.**

Definition 3

A continuum *X* is called *n*-chainable, where $n \ge 3$, if for any open cover \mathcal{U} with $|\mathcal{U}| \le n$ there is an open-chain refinement.

A continuum X is a chainable iff X is n-chainable for each n.

Remark

If X is *n*-chainable, then X is *m*-chainable for each $m \leq n$.

In the paper T. Banakh, P. Bankston, B. Raines, W. Ruitenburg, *Chainability* and *Hemmingsen's theorem*, Topology Appl. **153** (2006) 2462–2468, it was announced (without proof) that 4-chainable implies *n*-chainability for each *n*. In other words 4-chainability implies chainability.

We will show that the same is true in more general situation.

Definition 3

A continuum X is called *n*-chainable, where $n \ge 3$, if for any open cover \mathcal{U} with $|\mathcal{U}| \le n$ there is an open-chain refinement.

A continuum X is a chainable iff X is n-chainable for each n.

Remark

If *X* is *n*-chainable, then *X* is *m*-chainable for each $m \leq n$.

In the paper T. Banakh, P. Bankston, B. Raines, W. Ruitenburg, *Chainability and Hemmingsen's theorem*, Topology Appl. **153** (2006) 2462–2468, it was announced (without proof) that 4-chainable implies *n*-chainability for each *n*. In other words 4-chainability implies chainability. **We will show that the same is true in more general situation.** Let $\mathcal{U} = \{U_1, \ldots, U_n\}$ be a finite family of subsets of an arbitrary space X and let p_1, \ldots, p_n ba a system of points of an euclidean space \mathbb{R}^m . A nerve of the family \mathcal{U} is the simplicial complex $\mathcal{N}(U)$ formed by simplexes $\langle p_{i_0}, \ldots, p_{i_l} \rangle$ such that $U_{i_0} \cap \cdots \cap U_{i_l} \neq \emptyset$.

Theorem 1

If X is a normal space and $\mathcal{U} = \{U_1, \ldots, U_n\}$ is a finite open cover of X then there is a map from X into the nerve $\mathcal{N}(\mathcal{U})$ i.e. there is a continuous map $\kappa \colon X \to |\mathcal{N}(\mathcal{U})|$ such that

$$\kappa^{-1}(\mathrm{st}_{|\mathcal{N}(\mathcal{U})|}\boldsymbol{p}_i)\subseteq U_i$$

for every i = 1, ..., n.

$$\begin{split} |\mathcal{N}(\mathcal{U})| &= \bigcup \mathcal{N}(\mathcal{U}) - \text{a carrier of the nerve } \mathcal{N}(\mathcal{U});\\ \mathrm{st}_{|\mathcal{N}(\mathcal{U})|} p_i &= |\mathcal{N}(\mathcal{U})| \setminus \cup \{ S \in \mathcal{N}(\mathcal{U}) \colon p_i \notin S \} - \text{a star of vertex } p_i \text{ in } |\mathcal{N}(\mathcal{U})|. \end{split}$$

(D) (A)

\mathcal{U} -maps

Definition 4

Let \mathcal{U} be an open cover of a topological space X. A map $f: X \to Y$ into a space Y is called a \mathcal{U} -map if there is an open cover \mathcal{V} of Y whose preimage $f^{-1}(\mathcal{V}) = \{f^{-1}(\mathcal{V}) : \mathcal{V} \in \mathcal{V}\}$ refines \mathcal{U} .

Remark

Let *X* and *Y* be a compact Hausdorff spaces and let \mathcal{U} be an open cover of *X*. A map $f: X \to Y$ is \mathcal{U} -map iff for each $y \in Y$ there is $U \in \mathcal{U}$ such that $f^{-1}(y) \subseteq U$.

Theorem 2

If X is a normal space then dim X = 1 iff for any open cover \mathcal{U} of X there is a \mathcal{U} -map $f \colon X \to \Gamma$ onto a graph Γ .

Graph = carrier of 1-dimensional simplicial complex.

(_) (_]) (_) (_))

If \mathcal{U} is a chain then the carrier $|\mathcal{N}(\mathcal{U})|$ of the nerve $\mathcal{N}(\mathcal{U})$ is an arc, so:

Theorem 3

- A continuum X is chainable if and only if for any (finite) open cover U of X there is a U-map from X onto an arc.
- A continuum X is n-chainable iff for each open cover \mathcal{U} of X such that $|\mathcal{U}| \leq n$ there is a \mathcal{U} -map f from X onto an arc.

Tree-like continua

A continuum X is said to be tree-like provided that every open cover of X can be refined by a finite open cover having nerve a tree, that is, having nerve a connected acyclic graph. Similarly, to the *n*-chainability we define the notion of a *n*-tree-likeness.

A counterpart of the Theorem 3 for the class of tree-like continua is the following:

Theorem 4

• A continuum X is a tree-like if and only if for each open cover \mathcal{U} of X there is a tree T and \mathcal{U} -map $f: X \to T$.

② A continuum X is a n-tree-like if and only if for each open cover U of X such that |U| ≤ n there is a tree T and U-map f : X → T.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Tree-like continua

A continuum X is said to be tree-like provided that every open cover of X can be refined by a finite open cover having nerve a tree, that is, having nerve a connected acyclic graph. Similarly, to the *n*-chainability we define the notion of a *n*-tree-likeness.

A counterpart of the Theorem 3 for the class of tree-like continua is the following:

Theorem 4

• A continuum X is a tree-like if and only if for each open cover \mathcal{U} of X there is a tree T and \mathcal{U} -map $f: X \to T$.

(2) A continuum X is a n-tree-like if and only if for each open cover \mathcal{U} of X such that $|\mathcal{U}| \leq n$ there is a tree T and \mathcal{U} -map $f : X \to T$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

7/15

Tree-like continua

A continuum X is said to be tree-like provided that every open cover of X can be refined by a finite open cover having nerve a tree, that is, having nerve a connected acyclic graph. Similarly, to the *n*-chainability we define the notion of a *n*-tree-likeness.

A counterpart of the Theorem 3 for the class of tree-like continua is the following:

Theorem 4

- A continuum X is a tree-like if and only if for each open cover \mathcal{U} of X there is a tree T and \mathcal{U} -map $f: X \to T$.
- A continuum X is a n-tree-like if and only if for each open cover U of X such that |U| ≤ n there is a tree T and U-map f: X → T.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Chainable and tree-like continua are particular cases of the concept of a \mathfrak{T} -like continuum. We shall say that a continuum X is \mathfrak{T} -like, where \mathfrak{T} is a class of continua, if for any open cover \mathcal{U} of X there is a \mathcal{U} -map $f: X \to T$ onto some space $T \in \mathfrak{T}$. A continuum X is called *n*- \mathfrak{T} -like is for any open cover \mathcal{U} with $|\mathcal{U}| \leq n$ there is an \mathcal{U} -map $f: X \to T \in \mathfrak{T}$.

・ロト ・同ト ・ヨト ・ヨト

Chainable and tree-like continua are particular cases of the concept of a \mathfrak{T} -like continuum. We shall say that a continuum X is \mathfrak{T} -like, where \mathfrak{T} is a class of continua, if for any open cover \mathcal{U} of X there is a \mathcal{U} -map $f \colon X \to T$ onto some space $T \in \mathfrak{T}$.

A continuum X is called *n*- \mathfrak{T} -like is for any open cover \mathcal{U} with $|\mathcal{U}| \leq n$ there is an \mathcal{U} -map $f: X \to T \in \mathfrak{T}$.

Main Theorem

Theorem 5

For a subclass \mathfrak{T} of the class of tree-like continua and a continuum X the following conditions are equivalent:

- X is ℑ-like (i.e. for each open cover U of X there is a U-map f: X → T of X onto a space T ∈ ℑ);
- 2 X is 4- \mathfrak{T} -like (i.e for each 4-set open cover $\mathcal{U} = \{U_1, U_2, U_3, U_4\}$ of X there is a \mathcal{U} -map $f : X \to T$ of X onto a space $T \in \mathfrak{T}$).

Corollary 1

A continuum X is chainable (resp. tree-like) if and only if each 4-set open cover $\mathcal{U} = \{U_1, U_2, U_3, U_4\}$ of X has a chain-open (resp. tree-open) refinement.

Main Theorem

Theorem 5

For a subclass \mathfrak{T} of the class of tree-like continua and a continuum X the following conditions are equivalent:

- X is ℑ-like (i.e. for each open cover U of X there is a U-map f: X → T of X onto a space T ∈ ℑ);
- ② *X* is 4-𝔅-like (i.e for each 4-set open cover $U = \{U_1, U_2, U_3, U_4\}$ of *X* there is a *U*-map *f* : *X* → *T* of *X* onto a space *T* ∈ 𝔅).

Corollary 1

A continuum X is chainable (resp. tree-like) if and only if each 4-set open cover $U = \{U_1, U_2, U_3, U_4\}$ of X has a chain-open (resp. tree-open) refinement.

・ロト ・同ト ・ヨト ・ヨト

A B K A B K

10/15

Theorem 6 (Hemmingsen)

For a compact Hausdorff space X the following conditions are equivalent:

- Im X ≤ 1, which means that any open cover U of X has an open refinement V of order ≤ 2;
- 2 each 3-set open cover \mathcal{U} of X has an open refinement \mathcal{V} of order ≤ 2 ;
- Seach 3-set open cover U = {U₁, U₂, U₃} of X has an open 3-set refinement V = {V₁, V₂, V₃} with V₁ ∩ V₂ ∩ V₃ = ∅;

Corollary 2

Let \mathfrak{T} be a some class of tree-like continua. If X is a n- \mathfrak{T} -like continuum, $n \ge 3$, then dim X = 1.

Theorem 6 (Hemmingsen)

For a compact Hausdorff space X the following conditions are equivalent:

- Im X ≤ 1, which means that any open cover U of X has an open refinement V of order ≤ 2;
- 2 each 3-set open cover \mathcal{U} of X has an open refinement \mathcal{V} of order ≤ 2 ;
- Seach 3-set open cover U = {U₁, U₂, U₃} of X has an open 3-set refinement V = {V₁, V₂, V₃} with V₁ ∩ V₂ ∩ V₃ = ∅;

Corollary 2

Let \mathfrak{T} be a some class of tree-like continua. If X is a n- \mathfrak{T} -like continuum, $n \ge 3$, then dim X = 1.

글 > - - - - >

Lemma 1

For any open cover \mathcal{U} of a topological graph Γ there is a \mathcal{U} -map $f : \Gamma \to G$ onto a topological graph of degree ≤ 3 .

This lemma can be easily proved by induction with respect to number of branching point of Γ . The following drawing illustrates how to decrease a degree of a selected vertex of a graph.

Lemma 1

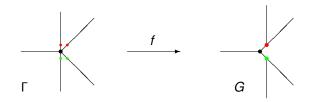
For any open cover \mathcal{U} of a topological graph Γ there is a \mathcal{U} -map $f : \Gamma \to G$ onto a topological graph of degree ≤ 3 .

This lemma can be easily proved by induction with respect to number of branching point of Γ . The following drawing illustrates how to decrease a degree of a selected vertex of a graph.

Lemma 1

For any open cover \mathcal{U} of a topological graph Γ there is a \mathcal{U} -map $f : \Gamma \to G$ onto a topological graph of degree ≤ 3 .

This lemma can be easily proved by induction with respect to number of branching point of Γ . The following drawing illustrates how to decrease a degree of a selected vertex of a graph.



In the next lemma graph G is consider as a combinatorial object.

Lemma 2

Let G = (V, E) be a connected graph with deg $(G) \leq 3$ such that $d(u, v) \geq 6$ for any two vertices $u, v \in V$ of order 3. Then there is a 4-coloring $\chi: V \to \{1, 2, 3, 4\}$ such that no distinct vertices $u, v \in V$ with $d(u, v) \leq 2$ have the same color.

Proof.

Let $V_3 = \{v \in V : \deg(v) = 3\}$ and let $B(v) = \{u \in V : \{u, v\} \in E\}$ for each $v \in V$. Since $\deg(G) \leq 3$ then $|B(v)| \leq 4$ for each $v \in V$. Moreover:

$$v, w \in V_3, v \neq w \Rightarrow B(v) \cap B(w) = \emptyset.$$

So we can define a 4-coloring χ on the union $\bigcup_{v \in V_3} B(v)$ so that χ is injective on each B(v) and $\chi(v) = \chi(w)$ for each $v, w \in V_3$. Next, it remains to color the remaining vertices all of order ≤ 2 by four colors $\chi(x) \neq \chi(y)$ if $d(x, y) \leq 2$. It is easy to check that this always can be done.

3

Take a class \mathfrak{T} of tree-like continua and assume that X is a continuum such that for any 4-set open cover \mathcal{U}_4 of X there is a \mathcal{U}_4 -map $f: X \to T$ onto a space $T \in \mathfrak{T}$. We should prove that such a map exists for any (finite) open cover \mathcal{U} of X.

By the corollary 2, there is a \mathcal{U} -map $f : X \to \Gamma$ onto a topological graph Γ . Because of Lemma 1, we can assume that deg(Γ) \leq 3. Selecting vertices on edges of Γ , we find so fine triangulation G = (V, E) of the topological graph Γ that

- the distance between any vertices of order 3 in the path metric of G is ≥ 6;
- the cover $\{f^{-1}(st_{\Gamma}(v)) : v \in V\}$ of X is inscribed into \mathcal{U} .

Lemma 2 implies that there is a 4-coloring $\chi : V \to \{1, 2, 3, 4\}$ of *V* such that no vertices $u, v \in V$ with $0 < d(u, v) \leq 2$ are monochromatic.

For $i \in \{1, 2, 3, 4\}$ consider the open set

$$V_i = \cup \{ \operatorname{st}_{\Gamma} v \colon \chi(v) = i \}.$$

The sets V_1, \ldots, V_4 cover Γ . Then for the 4-set cover $\mathcal{V} = \{f^{-1}(V_i): i \leq 4\}$ of X we can find a \mathcal{V} -map $g: X \to Y$ to a continuum $Y \in \mathfrak{T}$. Since Y is tree-like, there is a map $\pi: Y \to T$ onto a topological tree such that

the composition $h = \pi \circ g : X \to T$ still is a \mathcal{V} -map. Take a triangulation $H = (V_T, E_T)$ of T so fine that the cover $\{h^{-1}(\operatorname{st}_T t) : t \in V_T\}$ is inscribed into the cover \mathcal{V} . Consequently, for each vertex $t \in V_T$ we can find a number $\xi(t) \in \{1, 2, 3, 4\}$ such that

$$h^{-1}(\operatorname{st}_T t) \subseteq f^{-1}(V_{\xi(t)}).$$

Using the property of the coloring χ we can prove that

$$(\forall t \in V_T)(\exists ! v_t \in V)(\xi(t) = \chi(v_t)).$$

So,

$$g^{-1}(\pi^{-1}(\operatorname{st}_{\mathsf{T}} t)) = h^{-1}(\operatorname{st}_{\mathsf{T}} t) \subseteq f^{-1}(\operatorname{st}_{\mathsf{\Gamma}} v_t) \subseteq U$$

for some $U \in U$. It means that g is U-map, so this finishes the proof.

Theorem 7

For a 1-dimensional continuum X the following conditions are equivalent:

- each map from X into the circle is homotopic to a constant map;
- X is 3-chainable;
- X is 3-tree-like.

chainable continua \subsetneq tree-like continua \subsetneq 3-chainable kontinua = 3-tree-like continua

There is a 1-dimensional continuum for which each map from X into the circle is homotopic to a constant map but it is not tree-like – J. H. Case,

R. E. Chamberlin *Characterizations of tree-like continua*, Pacific J. Math. **10** (1960) 73–84.